Topology of Streptococcus pneumoniae CpsC, a polysaccharide copolymerase and bacterial protein tyrosine kinase adaptor protein.
نویسندگان
چکیده
In Gram-positive bacteria, tyrosine kinases are split into two proteins, the cytoplasmic tyrosine kinase and a transmembrane adaptor protein. In Streptococcus pneumoniae, this transmembrane adaptor is CpsC, with the C terminus of CpsC critical for interaction and subsequent tyrosine kinase activity of CpsD. Topology predictions suggest that CpsC has two transmembrane domains, with the N and C termini present in the cytoplasm. In order to investigate CpsC topology, we used a chromosomal hemagglutinin (HA)-tagged Cps2C protein in S. pneumoniae strain D39. Incubation of both protoplasts and membranes with carboxypeptidase B (CP-B) resulted in complete degradation of HA-Cps2C in all cases, indicating that the C terminus of Cps2C was likely extracytoplasmic and hence that the protein's topology was not as predicted. Similar results were seen with membranes from S. pneumoniae strain TIGR4, indicating that Cps4C also showed similar topology. A chromosomally encoded fusion of HA-Cps2C and Cps2D was not degraded by CP-B, suggesting that the fusion fixed the C terminus within the cytoplasm. However, capsule synthesis was unaltered by this fusion. Detection of the CpsC C terminus by flow cytometry indicated that it was extracytoplasmic in approximately 30% of cells. Interestingly, a mutant in the protein tyrosine phosphatase CpsB had a significantly greater proportion of positive cells, although this effect was independent of its phosphatase activity. Our data indicate that CpsC possesses a varied topology, with the C terminus flipping across the cytoplasmic membrane, where it interacts with CpsD in order to regulate tyrosine kinase activity.
منابع مشابه
Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae.
In Streptococcus pneumoniae, CpsB, CpsC, and CpsD are essential for encapsulation, and mutants containing deletions of cpsB, cpsC, or cpsD exhibit rough colony morphologies. CpsD is an autophosphorylating protein-tyrosine kinase, CpsC is required for CpsD tyrosine phosphorylation, and CpsB is a phosphotyrosine-protein phosphatase. We have previously shown that autophosphorylation of CpsD at tyr...
متن کاملAutophosphorylation of the Bacterial Tyrosine-Kinase CpsD Connects Capsule Synthesis with the Cell Cycle in Streptococcus pneumoniae
Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and p...
متن کاملTyrosine phosphorylation enhances activity of pneumococcal autolysin LytA.
Tyrosine phosphorylation has long been recognized as a crucial post-translational regulatory mechanism in eukaryotes. However, only in the past decade has recognition been given to the crucial importance of bacterial tyrosine phosphorylation as an important regulatory feature of pathogenesis. This study describes the effect of tyrosine phosphorylation on the activity of a major virulence factor...
متن کاملChemical Inhibition of Bacterial Protein Tyrosine Phosphatase Suppresses Capsule Production
Capsule polysaccharide is a major virulence factor for a wide range of bacterial pathogens, including Streptococcus pneumoniae. The biosynthesis of Wzy-dependent capsules in both gram-negative and -positive bacteria is regulated by a system involving a protein tyrosine phosphatase (PTP) and a protein tyrosine kinase. However, how the system functions is still controversial. In Streptococcus pne...
متن کاملStreptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase.
The first four genes of the capsule locus (cps) of Streptococcus pneumoniae (cpsA to cpsD) are common to most serotypes. We have previously determined that CpsD is an autophosphorylating protein-tyrosine kinase, demonstrated that CpsC is required for CpsD tyrosine-phosphorylation, and shown that CpsB is required for dephosphorylation of CpsD. In the present study we show that CpsB is a novel ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 197 1 شماره
صفحات -
تاریخ انتشار 2015